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TOWARDS AN ACCURATE SPECTRE GADGET SCANNER

Our Approach: Exploitability Assessment

Validation of Approach

Comparison with SOTA Scanners

Since the emergence of Spectre attack in 2018, a significant effort 
has been dedicated to countering this threat with software patches. 
However, these mitigation strategies typically incur substantial 
performance drawbacks. The key to minimizing these slowdowns lies 
in accurately identifying Spectre gadgets—code segments 
vulnerable to such attacks.  Despite ongoing research, current 
scanners still struggle to precisely quantify gadget security risks and 
avoid false positives.

In this work, we target at developing an accurate Spectre gadget 
scanner, addressing all recognized Spectre-V1 variants.

Current Spectre scanners, despite advancements, often incorrectly 
flag non-exploitable gadgets as vulnerable, as shown in Figure 1.

x = user_input();

if (x < 16) {

  y = array1[x];

  z = array2[512 * y];

}

x = user_input();

if (x < obj.size) {

  y = obj.array1[x];

  z = array2[512 * y];

}
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x = user_input()

if (x < *boundPtr)

True     False

y = array1[x]

z = array2[y]

end if
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attacker()
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Attack Pattern Succ. Rate
flush idx 0.0%
flush boundPtr 99.9%
flush boundPtr + idx 86.8%

if (*idx < *boundPtr) {

  y = array1[*idx];

  z = array2[y * 512];

}

Attack Pattern Succ. Rate
trigger if-branch 99.9%
trigger else-branch 0.0%

if (cond) bound=*boundPtr;

else bound=16;

if (x < bound) {

  y = array1[x];

  z = array2[512 * y]; }
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Figure 1. Gadgets incorrectly deemed vulnerable by prior scanners, 
though not exploitable by Spectre-V1 attacks. This results from 
overestimating the speculation window as the full Reorder Buffer size.

We observe that the limited exploitability of these gadgets is due to 
the attacker's inability to fit the disclosure gadget within the 
speculation window, a condition we term the 'windowing primitive'. 
Our key insights include:
• Windowing primitive constrains exploitability of gadgets.
• Windowing primitive depends on the runtime behavior of gadgets.
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We propose exploitability assessment, which quantifies the 
windowing primitive at runtime, under a simulated attacker:
• In simulating an attacker, we emphasize two key characteristics of 

attack patterns: enhancing the coexistence of the speculation 
and gadget windows while preserving their isolation. We focus on 
an attacker capable of widening the speculation window via 
cache eviction, proven most effective for Spectre-V1. While this 
has been the sole effective strategy to date, our methodology can 
accommodate stronger capabilities.

• To quantify the windowing primitive, we assess the likelihood of 
fitting the gadget window within the speculation window during 
runtime. In particular, we approximate both windows through the 
execution times of selected instructions. Then, we compare them 
with a probabilistic equation, as shown in Figure 2.

Figure 2. Exploitability assessment on a classical Spectre-V1 gadget. A 
higher score signifies greater exploitability of the gadgets.

Figure 3. Validating the effectiveness of simulated attack patterns. a) 
Cache eviction of selected address yields highest attack success rate. b) 
Triggering selected control flow yields highest attack success rate.

Figure 4. Validating the accuracy of vulnerability scores. We conducted 
real attacks on a range of gadgets, confirming that the vulnerability 
scores aligned closely with the actual attack success rates.

Kocher’s 
Dataset Brotli HTTP JSMN libHTP libYAML OpenSSL Linux 

kernel
#gadgets 
reported
by SOTA 
scanners

14 724 5 3 207 180 1415 1498

#FPs 
identified by 
our approach

1 80 0 3 49 16 755 17

Rate 7.1% 11.0% 0% 100% 23.7% 8.8% 53.0% 1.1%
Figure 5. Enhanced accuracy in detection. Our approach achieves an 
average reduction of 22.4% in false positives compared to SpecFuzz for 
userspace applications and Kasper for the Linux kernel.

Figure 6. Quantitative evaluation results. Our approach reveals 1109 
gadgets with varying exploitability levels between highly exploitable 
(10/10) and hardly exploitable (0/10). This enables customized defenses 
with minimal performance overhead.

#gadgets

Score decreases 
5+ / 10 9

Score increases 
5+ / 10 19

Figure 7. Security impact of IP-based prefetcher. Our approach reveals 
that IP-based prefetcher significantly reduces the exploitability of 9 
gadgets, while simultaneously increasing the exploitability of 19 others.

x = user_input();

if ( is_valid(x) ) {

workload(x);

}
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In this work, we propose exploitability assessment, an approach to 
model the windowing primitive of Spectre gadgets. Our implemented 
approach:

• Reduces false positives in SOTA works by 22.4% on average,
• Quantifies the exploitability of gadgets with fine-grained 

precision,
• Examines the security impact of prefetching techniques.

These findings are corroborated by comprehensive case studies, 
validating the effectiveness of our approach.

a) The conditional branch resolves 
faster, only comparing a constant, 
while the disclosure gadget requires 
slower arithmetic operations and 
memory loads.

b) The conditional branch resolves 
faster, even if the bound value is 
delayed by techniques like cache 
eviction, as the bound value shares a 
cache line with the array address.
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