
Qi Ling*, Yi Ren†, Baris Kasikci‡, Shuwen Deng†
TOWARDS AN ACCURATE SPECTRE GADGET SCANNER

Our Approach: Exploitability Assessment

Validation of Approach

Comparison with SOTA Scanners

Since the emergence of Spectre attack in 2018, a significant effort
has been dedicated to countering this threat with software patches.
However, these mitigation strategies typically incur substantial
performance drawbacks. The key to minimizing these slowdowns lies
in accurately identifying Spectre gadgets—code segments
vulnerable to such attacks. Despite ongoing research, current
scanners still struggle to precisely quantify gadget security risks and
avoid false positives.

In this work, we target at developing an accurate Spectre gadget
scanner, addressing all recognized Spectre-V1 variants.

Current Spectre scanners, despite advancements, often incorrectly
flag non-exploitable gadgets as vulnerable, as shown in Figure 1.

x = user_input();

if (x < 16) {

 y = array1[x];

 z = array2[512 * y];

}

x = user_input();

if (x < obj.size) {

 y = obj.array1[x];

 z = array2[512 * y];

}

1

2

3

4

5

1

2

3

4

5

x = user_input()

if (x < *boundPtr)

True False

y = array1[x]

z = array2[y]

end if

4. Quantify the
exploitability. à 10/10

1. Select and
simulate an

effective attack
pattern.

2. Prepare for
runtime

measurement
of speculation
window and

gadget
window.

3. Fuzz the program.
 Measure the windows.

attacker()

1 10 100

Attack Pattern Succ. Rate
flush idx 0.0%
flush boundPtr 99.9%
flush boundPtr + idx 86.8%

if (*idx < *boundPtr) {

 y = array1[*idx];

 z = array2[y * 512];

}

Attack Pattern Succ. Rate
trigger if-branch 99.9%
trigger else-branch 0.0%

if (cond) bound=*boundPtr;

else bound=16;

if (x < bound) {

 y = array1[x];

 z = array2[512 * y]; }

Gadgets with increasing exploitability

Vul. score

Conclusion

Evaluation Results

Problem Analysis

Motivation

Figure 1. Gadgets incorrectly deemed vulnerable by prior scanners,
though not exploitable by Spectre-V1 attacks. This results from
overestimating the speculation window as the full Reorder Buffer size.

We observe that the limited exploitability of these gadgets is due to
the attacker's inability to fit the disclosure gadget within the
speculation window, a condition we term the 'windowing primitive'.
Our key insights include:
• Windowing primitive constrains exploitability of gadgets.
• Windowing primitive depends on the runtime behavior of gadgets.

920
634

1378

0 1 2 3 4 5 6 7 8 9 10

#g
ad

ge
ts

Vulnerability score on a 0~10 scale

1109

We propose exploitability assessment, which quantifies the
windowing primitive at runtime, under a simulated attacker:
• In simulating an attacker, we emphasize two key characteristics of

attack patterns: enhancing the coexistence of the speculation
and gadget windows while preserving their isolation. We focus on
an attacker capable of widening the speculation window via
cache eviction, proven most effective for Spectre-V1. While this
has been the sole effective strategy to date, our methodology can
accommodate stronger capabilities.

• To quantify the windowing primitive, we assess the likelihood of
fitting the gadget window within the speculation window during
runtime. In particular, we approximate both windows through the
execution times of selected instructions. Then, we compare them
with a probabilistic equation, as shown in Figure 2.

Figure 2. Exploitability assessment on a classical Spectre-V1 gadget. A
higher score signifies greater exploitability of the gadgets.

Figure 3. Validating the effectiveness of simulated attack patterns. a)
Cache eviction of selected address yields highest attack success rate. b)
Triggering selected control flow yields highest attack success rate.

Figure 4. Validating the accuracy of vulnerability scores. We conducted
real attacks on a range of gadgets, confirming that the vulnerability
scores aligned closely with the actual attack success rates.

Kocher’s
Dataset Brotli HTTP JSMN libHTP libYAML OpenSSL Linux

kernel
#gadgets
reported
by SOTA
scanners

14 724 5 3 207 180 1415 1498

#FPs
identified by
our approach

1 80 0 3 49 16 755 17

Rate 7.1% 11.0% 0% 100% 23.7% 8.8% 53.0% 1.1%
Figure 5. Enhanced accuracy in detection. Our approach achieves an
average reduction of 22.4% in false positives compared to SpecFuzz for
userspace applications and Kasper for the Linux kernel.

Figure 6. Quantitative evaluation results. Our approach reveals 1109
gadgets with varying exploitability levels between highly exploitable
(10/10) and hardly exploitable (0/10). This enables customized defenses
with minimal performance overhead.

#gadgets

Score decreases
5+ / 10 9

Score increases
5+ / 10 19

Figure 7. Security impact of IP-based prefetcher. Our approach reveals
that IP-based prefetcher significantly reduces the exploitability of 9
gadgets, while simultaneously increasing the exploitability of 19 others.

x = user_input();

if (is_valid(x)) {

workload(x);

}

1

2

3

4

Prefetch
is_valid() data

Prefetch
workload() data

In this work, we propose exploitability assessment, an approach to
model the windowing primitive of Spectre gadgets. Our implemented
approach:

• Reduces false positives in SOTA works by 22.4% on average,
• Quantifies the exploitability of gadgets with fine-grained

precision,
• Examines the security impact of prefetching techniques.

These findings are corroborated by comprehensive case studies,
validating the effectiveness of our approach.

a) The conditional branch resolves
faster, only comparing a constant,
while the disclosure gadget requires
slower arithmetic operations and
memory loads.

b) The conditional branch resolves
faster, even if the bound value is
delayed by techniques like cache
eviction, as the bound value shares a
cache line with the array address.

*University of Michigan, †Tsinghua University, ‡University of Washington

Real attack

